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This Perspective provides an overview of state-of-the-art ab initio quantum chemical methodology and applications. The methods
that are discussed include coupled cluster theory, localized second-order Moller–Plesset perturbation theory, multireference perturba-
tion approaches, and density functional theory. The accuracy of each approach for key chemical properties is summarized, and the
computational performance is analyzed, emphasizing significant advances in algorithms and implementation over the past decade.
Incorporation of a condensed-phase environment by means of mixed quantum mechanical�molecular mechanics or self-consistent
reaction field techniques, is presented. A wide range of illustrative applications, focusing on materials science and biology, are dis-
cussed briefly.
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O
ver the past three decades, ab
initio quantum chemistry has
become an essential tool in the
study of atoms and molecules

and, increasingly, in modeling complex
systems such as those arising in biology
and materials science. The underlying
core technology is computational solution
of the electronic Schrodinger equation;
given the positions of a collection of
atomic nuclei, and the total number of
electrons in the system, calculate the elec-
tronic energy, electron density, and other
properties by means of a well defined,
automated approximation (a ‘‘model
chemistry’’). The ability to obtain ‘‘good-
enough’’ solutions to the electronic Schro-
dinger equation for systems containing
tens, or even hundreds, of atoms has revo-
lutionized the ability of theoretical chem-
istry to address important problems in a
wide range of disciplines; the Nobel Prize
awarded to John Pople and Walter Kohn
in 1998 is a reflection of this observation.

In its exact form, the electronic Schrod-
inger equation is a many-body problem,
whose computational complexity grows
exponentially with the number of elec-
trons, and hence, a brute force solution is
intractable. Hartree–Fock theory, a mean
field approach, produces reasonable re-
sults for many properties but is incapable
of providing a robust description of reac-
tive chemical events in which electron cor-
relation has a major role. Thus, a key
problem has been the development of
treatments of electron correlation that
exhibit a tractable scaling in computa-
tional effort with the size of the system.
The considerable progress that has been
made along these lines is outlined below.

Given a well defined theoretical
framework of approximation, the next
requirement is efficient computational
implementation. Considerable sophisti-
cation is required to achieve acceptable
accuracy and efficiency; the leading

quantum chemistry programs are mil-
lions of lines of computer code, and
mathematical algorithms to reduce for-
mal scaling of computational effort with
system size have an increasingly crucial
role in meeting the challenge of han-
dling complex system relevant to practi-
cal applications. Below, the most impor-
tant computational advances are
described briefly, and their impact on
the ability to address critical problems is
analyzed.

The treatment of large, condensed-
phase systems (e.g., proteins in aqueous
solution) entirely by ab initio methods is
extremely expensive computationally.
However, it is often the case that a rela-
tively small region of the system can be
modeled at the ab initio quantum chemi-
cal level, whereas the remainder can be
treated more approximately [e.g., by
means of molecular mechanics (MM) or
continuum solvation models]. The tech-
nologies for coupling quantum chemical
methods to these alternative types of
models [mixed quantum mechanics
(QM)�MM and self-consistent reaction
field (SCRF) approaches] have become an
essential component of the theoretical
arsenal, enabling realistic modeling of
even the most complex molecular struc-
tures. The key issues in these types of cal-
culations, as well as a discussion of recent
successful implementations, are presented
below.

Last, a remarkable range of applica-
tions have appeared in the past decade,
impacting nearly every aspect of chemis-
try, biology, and materials science.
Space permits discussion of only a small
fraction of these calculations, which are
presented below as examples of what is
possible at the current state of the art.
Continued improvements in the theory
and implementation, and reduction in
the cost�performance of computing, en-
sure that dramatic progress will con-

tinue to be made in the years to come,
advancing toward the ultimate goal of
theory achieving full partnership with
experiment as both an explanatory and
predictive methodology.

Quantum Chemical Theory
Two highly productive approaches to solu-
tion of the electronic Schrodinger equa-
tion have arisen over the past 50 years.
Wavefunction-based approaches expand
the electronic wavefunction as a sum of
Slater determinants, the orbitals and coef-
ficients of which are optimized by various
numerical procedures. Hartree–Fock the-
ory is the simplest method of this type,
involving optimization of a single determi-
nant; however, as mentioned above, its
usefulness is limited because of complete
neglect of electron correlation. We discuss
three types of correlated wavefunction-
based approaches: second-order Moller–
Plesset perturbation theory (MP2), with
an emphasis on the localized version of
this methodology (1); methods based on
the coupled-cluster ansatz, focusing on the
widely used CCSD(T) (coupled cluster
with single, double, and triple perturbative
excitations) variant (2); and multirefer-
ence perturbation methods, such as
CASPT2 (complete active space with sec-
ond-order perturbation theory) (3). Each
of these approximations has a different
computational scaling with the number of
electrons and is (arguably) the method of
choice for different types of problems.

The second class of theoretical ap-
proaches are based on density functional
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theory (DFT), which, following the Ho-
henberg–Kohn theorem (4), mandates
expression of the total energy of the sys-
tem as a functional of the electron den-
sity. Because the electron density depends
on only three coordinates (as opposed to
the 3N coordinates of N electrons), the
computational effort required to solve the
equations of DFT is comparable with that
required for Hartree–Fock theory, thus
rendering DFT highly attractive from the
point of view of computational implemen-
tation. However, the correct functional of
the energy is unknown and has to be con-
structed by heuristic approximation. Initial
functionals, based principally on behavior
of the electron gas (5), were lacking in the
accuracy required for chemical applica-
tions. Breakthroughs over the past two
decades (6–10) have led to the develop-
ment of functionals capable of remarkable
accuracy and breadth of applicability
across the periodic table, although it is
important to note that there remain limi-
tations as well.

At present, there are two principal
classes of functionals that have been
extensively deployed and tested in large-
scale applications as well as small mole-
cule benchmarks: gradient-corrected (7, 8,
10) (e.g., BLYP; ref. 7), and hybrid (7, 9)
(e.g., B3LYP; ref. 7), functionals. Gradi-
ent-corrected functionals begin with the
local-density approximation but add terms
involving the gradient of the electron den-
sity. Hybrid functionals also incorporate
gradient corrections but add an empiri-
cally fitted admixture of exact Hartree–
Fock exchange. Although there are
differences between the individual func-
tionals in each class, the differences be-
tween classes are substantially larger;
hence, we focus below on one example
from each class (BLYP and B3LYP, as
cited above) as representative members.

Coupled cluster methods are the most
computationally expensive but also, in
principle, the most accurate of the
approaches that we consider. By an
exponential ansatz for the coupling of
correlated electron pairs, highly excited
determinants are incorporated into the
wavefunction without the combinatorial
explosion of effort implied by naı̈ve con-
figuration-interaction approaches; at
present, the CCSD(T) approach (in
which triple excitations are treated per-
turbatively) provides the best trade-off
of accuracy and efficiency (2). The for-
mal scaling with number of electrons N
of CCSD(T) is N7; for technical reasons,
it has been difficult to improve on this
behavior in practice. Thus, calculations
are limited to small- to medium-sized
molecules, and parallel supercomputers
are required at the upper end of this
range.

In return for this high computational
cost, the level of accuracy that one can
expect from a benchmark CCSD(T) calcu-
lation for atomization energies (and other
less demanding thermochemical quanti-
ties) of small organic molecules is on the
order of a few tenths of 1 kcal�mol
(1 cal � 4.18 J) (11). Equilibrium bond
lengths and bond angles are typically
highly accurate (12). Indeed, the level of
precision in achieved in geometry is un-
necessary for energetic accuracy; hence,
less expensive methods are often used to
compute structures. Excited-state methods
have been developed and have displayed
encouraging performance (13).

Turning next to MP2 methods, the
computational cost is reduced consider-
ably. Whereas formal scaling is N5, nu-
merical methods developed in the past
decade (discussed further below) yield
substantial reductions in scaling both
formally and asymptotically (as well as
significant absolute central processing unit
reductions for smaller systems), enabling
systems containing a few hundred atoms
to be treated routinely. The performance
of MP2 methods for properties involving
making or breaking electron pairs is sub-
stantially inferior to that of CCSD(T) and
also not as good as the best DFT meth-
ods, although recent results have come
closer to DFT benchmarks (14). However,
for most systems, MP2 does extremely
well for nonbonded interactions and inter-
nal conformational energetics, typically
delivering accuracy within �0.3 kcal�mol
if one extrapolates to the basis set limit
(15, 16, 23). A recent interesting exception
has been noted for stacking interactions
of the benzene dimer, where CCSD(T)
corrections are required to avoid errors in
the range of 0.5–1.0 kcal�mol (17); more
investigation will be required to enumer-
ate other outliers of this type.

Multireference perturbation methods,
such as CASPT2 (3), are more difficult to
use than either CCSD(T) or MP2 in that
they require a careful definition of the
active space of electrons to be treated at
the multireference level to be effective
(electrons not in the active space are
treated perturbatively). The computational
cost increases exponentially with the size
of the active space. Nevertheless, there
are some problems where CCSD(T)
methods have severe difficulties because
of the fact that the electronic wavefunc-
tion is no longer dominated by a single
(Hartree–Fock) determinant; an obvious
example is generating a complete poten-
tial energy curve in the process of break-
ing a bond (18). In this and other cases,
CASPT2 provides a reasonable alternative
enabling incorporation of multireference
character from the start, and it may be
the method of choice in many such cases.

Both gradient correct and hybrid DFT
methods achieve excellent results for equi-
librium geometries (19, 20) across the pe-
riodic table. For atomization energies,
there is a clear difference in performance;
for example, the BLYP functional has an
average error of 7.09 kcal�mol for the G2
set of 148 small molecules, whereas the
B3LYP functional has an average error of
3.11 kcal�mol for the same data set (21).
For transition-metal-containing systems,
the experimental data are less reliable,
and there are many different types of
bonding to consider. However, in typical
situations, the performance of B3LYP is
clearly respectable, with average errors
for bond energies of small transition metal
complexes in the range of 3–5 kcal�mol
(82). Thus, hybrid DFT provides a quanti-
tative means of investigating reactive
chemistry in large systems, albeit with
large errors for a small number of
outliers.

However, DFT is inferior to basis set
limit MP2 in achieving high precision for
energy differences in which bonds are not
made or broken, including hydrogen
bonding and conformational energetics
(22, 23). It is not the case that DFT yields
bad results for these problems (indeed, it
is clearly an improvement over Hartree–
Fock); it simply is less accurate (e.g., by
�0.5–1 kcal�mol for hydrogen bonding
energies) than MP2 when averaged over
many cases. Furthermore, the ability of
DFT to model dispersion (van der Waals)
interaction has not yet been established
(15); again, MP2 represents a qualitatively
superior alternative, which can itself be
applied to large systems at a quantitatively
(but not qualitatively) larger computa-
tional cost. Last, the time-dependent ver-
sion of DFT (TDDFT) in many cases pro-
vides reasonable results for excited states
(24–26) and is considerably less expensive
than alternatives such as CASPT2- and
CCSD(T)-based excited-state methods.

We can summarize the above results by
considering which quantum chemistry
methodology is the current method of
choice for various types of computational
chemistry modeling problems. For accu-
rate studies of small molecules in the gas
phase, CCSD(T) and related methods are
the approach of choice, perhaps combined
with less expensive methods to carry out
geometry optimization and�or obtain ba-
sis set convergence. For investigation of
reactive chemistry in medium to large sys-
tems, DFT is at present the best ap-
proach, in some cases it is possible to
check a truncated model of the actual
system by using coupled-cluster-based
methods (although typically not at a
benchmark level). MP2 methods are gen-
erally useful for studying nonbonded inter-
actions in both small and large systems
and in developing molecular mechanics
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force fields (discussed further below);
these types of calculations are highly rele-
vant in biology and materials science
problems. DFT can be used also in the
investigation of conformational and hy-
drogen bond interactions, provided that
the accuracy limitations are understood.
Last, there are a number of choices for
excited states, none of which are com-
pletely satisfactory but several of which
have yielded respectable results. This area
should benefit substantially from develop-
ment efforts.

Computational Implementation
Below, we briefly discuss state-of-the-art
computational implementation for each of
the four quantum chemical models pre-
sented above, beginning with the least
expensive (DFT). There are two funda-
mentally different numerical approaches
that are used currently for solving the
Kohn–Sham equations (27) as is required
in large-scale DFT calculations. The first
approach, arising primarily from the phys-
ics community, represents the electron
density orbitals by a plane wave basis set
(25). To date, efficient use of such meth-
ods has been possible only for gradient-
corrected (as opposed to hybrid) DFT
functionals, because the matrix elements
of the exact exchange operator are diffi-
cult to evaluate in a plane wave basis set.
The approach is most naturally applied to
condensed-phase systems (periodic solids
or liquids) in which the imposition of peri-
odic boundary conditions (implicit in the
use of plane waves, which are periodic) is
appropriate.

Plane-wave methods have been imple-
mented by two different algorithmic ap-
proaches. Car–Parinello methods (28–
31) mandate performing ab initio
molecular dynamics, evolving the system
by means of an extended Lagrangian
formalism. This type of approach is
most useful in studying dynamics in liq-
uids and molten solids, as well as in lo-
cating stationary points by means of
simulated annealing in systems in which
it is difficult to make a good initial
guess. Conjugate gradient-based optimi-
zation approaches, implemented in pro-
grams such as CASTEP (30) and VASP
(31) are typically used to study solid
state and surface science problems.

The alternative to plane-wave meth-
ods is the use of localized, atom-cen-
tered Gaussian basis sets, as has been
used for many years in solving the Har-
tree–Fock equations. Indeed, most local-
ized basis implementations of DFT were
developed by modifying existing Har-
tree–Fock codes, as was done, for exam-
ple, in the Gaussian series of programs
(32). The use of Gaussian basis func-
tions allows hybrid DFT functionals to
be treated in straightforward fashion.

Over the past decade, the following
advances have increased the efficiency
of Gaussian-based DFT methods sub-
stantially:

1. Numerical quadrature methods were
developed to perform integrals accu-
rately over the exchange-correlation
functional, which cannot be handled
analytically (33, 34).

2. The computation of cost of the Cou-
lomb term with system size can be
reduced from N2 to �N by the use of
multipole expansions (35–37).

3. Two numerical approaches to reducing
the formal scaling (as opposed to as-
ymptotic scaling) of the Coulomb and
exchange terms have been developed.
The first approach, pseudospectral
methods (37, 38), were introduced
more than two decades ago, and are
robustly implemented in the JAGUAR
program (39). The second approach,
resolution of the identity, is technically
different in its details but similar in
spirit. Resolution-of-the-identity meth-
ods (36) are implemented efficiently in
the TURBOMOLE program (40). Both
approaches in their current form deal
effectively with the Coulomb term;
pseudospectral methods handle exact
exchange (and, thus, hybrid DFT func-
tionals) with equal effectiveness. Both
approaches provide substantial central
processing unit reductions for medium
to large systems as compared with
conventional two-electron integral
methodology.

Two fundamental advances have dra-
matically reduced the computational
cost, and scaling with system size, of
MP2 calculations as compared with the
original formulations. The first advance
is the development of localized MP2
(LMP2) theory several decades ago (1).
In this approach, the Hartree–Fock or-
bitals are localized to bonds and lone
pairs, and electrons are correlated start-
ing from these orbitals rather than the
delocalized canonical Hartree–Fock or-
bitals. In principle, this methodology
should lead to substantial reductions in
computational effort, because an elec-
tron in a localized orbital can be corre-
lated by excitation into a localized vir-
tual space. In practice, there are
technical difficulties in realizing these
theoretical gains by using standard
transforms of analytical two-electron
integrals. However, the combination of
localized methods with pseudospectral
(23) (and, more recently, resolution of
the identity; ref. 41) methods enables, as
in the case of DFT, a reduction of the
formal scaling, in this case from N5 to
N3 (asymptotically approaching N2 and
even N at very large distances), and the

concomitant ability to treat large sys-
tems with computational effort that is a
small multiple of DFT, at least for sin-
gle point calculations. Efficient LMP2
methods are implemented in the JAG-
UAR (39) and QCHEM (42) programs, as
well as in codes described in ref. 41.

It has proven to be more difficult to
reduce the formal, or asymptotic, scal-
ing, of coupled cluster and multirefer-
ence perturbation methods, although
this area is of considerable active re-
search interest (discussed further in
Conclusion and Future Directions). De-
tails of the technology in both cases
have improved substantially, and appli-
cation of these methods to small to me-
dium-sized molecules in the gas phase is
now routine, although requirements for
computational power rise steeply as the
size of the system increases. Efficient
coupled-cluster methods are imple-
mented in the GAUSSIAN (32) and
QCHEM (42) programs; the MOLCAS pro-
gram (43) contains an optimized
CASPT2 methodology.

All four fundamental approaches have
benefited from the tremendous advances
in computational hardware over the past
decade. Localized basis function DFT
and local MP2 calculations can be per-
formed routinely for systems with hun-
dreds of atoms on personal computers,
which offer unparalleled cost�perfor-
mance savings. Plane-wave methods re-
quire tightly coupled parallel machines
if large unit cells are to be handled, in-
creasing their actual cost in dollar terms
significantly beyond what would be as-
sessed from reported central processing
unit times. Large-scale coupled-cluster
and multireference calculations also re-
quire parallel machines if the upper end
of the accessible range of molecules is
to be addressed.

Last, a crucial issue in obtaining
accurate quantum chemical results is
convergence of desired quantities (e.g.,
atomization energies) with basis set size,
particularly for wavefunction-based meth-
ods. One approach is to employ compos-
ite methods in which each challenging
aspect of an ab initio calculation (geome-
try optimization, basis set convergence,
inclusion of high-level correlation) can be
individually optimized with the most cost-
effective technology, and the results com-
bined (typically via a simple linear
scheme, often with an additive correction
to mimic the effect of high angular mo-
mentum functions) to yield a level of ac-
curacy not far from that obtainable from
employing the most expensive type of cal-
culation across the board. Typical meth-
ods, such as the widely used G2 (21) and
G3 (44) theory, incorporate a coupled-
cluster component, and are capable of
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achieving 1–2 kcal�mol average errors in
atomization energies at a cost far smaller
than benchmark CCSD (T) calculations
with large basis sets. A number of alterna-
tive approaches of this type have also
been developed, some of which appear to
yield impressive cost�performance im-
provements (45). An alternative approach
is to employ extrapolation methods, which
enable the effects of very large basis sets
to be inferred from a series of smaller
basis set calculations (46, 47).

Condensed-Phase Environments: SCRF
and Mixed Quantum�Classical Methods
The remarkable advances in ab initio
quantum chemical methodology and im-
plementation described above should
not obscure the fact that such calcula-
tions are still very expensive computa-
tionally as compared with more approxi-
mate models. Evaluation of the energy
of a configuration of a 50-atom mole-
cule by using a molecular mechanics
potential function requires substantially
�1 ms on a modern personal computer,
as compared with the several minutes
needed even at the DFT level for a sin-
gle-point electronic structure calcula-
tion. The huge difference in multiplica-
tive coefficient persists, regardless of
asymptotic scaling, as one goes to larger
systems; this fact makes quantum chemi-
cal calculations for systems containing
thousands or tens of thousands of atoms
impractical, particularly if significant
numbers of configurations need to be
studied. Furthermore, such heroic ef-
forts are also unnecessary in many ap-
plications; if the reactive event of inter-
est is localized (as is always the case in
biological systems and often the case in
materials problems), then treatment of
all but a small reactive region via a clas-
sical force field is, in general, an excel-
lent approximation, reproducing the
structural and electrostatic effects of the
environment on the reactive chemistry
with a reasonable degree of fidelity.

Mixed QM�MM methods (48) provide
a means of combining quantum chemical
and molecular mechanics models in a way
that preserves the integrity of the overall
energy function. The key issue is the in-
terface between the QM and MM re-
gions. If the QM and MM regions are not
covalently linked, then the problem is rel-
atively straightforward; introduction of van
der Waals parameters onto the QM at-
oms, and optimization of these parameters
to fit fully QM hydrogen bonding energies
(49), will yield a model that does a rea-
sonable job of reproducing the fully QM
results over the entire phase space. How-
ever, when there are covalent connections
between regions (for example, when
part of a protein active site needs to be
treated at the QM level), definition of the

interface requires more sophisticated
technology.

Over the past decade, two approaches
have emerged which have enabled sig-
nificant progress to be made in develop-
ing accurate QM�MM interfaces. The
first approach employs link atoms, which
are fictitious atoms that are used to cap
the QM and MM regions (50–52). The
second uses frozen localized orbitals,
derived from model molecules, at the
interface between a QM and MM atom
(49, 53). The quality of the results de-
pends not only on the functional form
of the interface (probably, both methods
are capable of achieving good results if
appropriately optimized) (54) but also
on the details of the parameterization.
The most accurate results are achieved
by making the parameters explicitly de-
pend on the local chemical environment;
for example, in ref. 49, parameters are
developed for each amino acid side
chain, with cuts between the �-carbon
and �-carbon as well as in the peptide
backbone. Such specific parametrization
is capable of yielding a robust model
with average errors on the order of 0.5–
1.0 kcal�mol as compared with a fully
quantum chemical results, for various
tests (conformational energetics, depro-
tonation energies, and more complex
assessments in which the size of the MM
region is increased systematically). For
the most part, these errors are smaller
than the intrinsic errors in the quantum
chemical methods and, hence, are un-
likely to be the limiting factor in achiev-
ing high accuracy.

In principle, the computational cost
of a QM�MM single point calculation
should be nearly identical to that of a
QM calculation of the same size as the
QM region because the MM region con-
tributes negligibly. For stationary point
optimization, a problem arises because
of the fact that a large system, contain-
ing thousands of atoms, will ordinarily
take many more gradient cycles to opti-
mize than a system containing hundreds
of atoms. However, this problem can be
solved by adiabatically minimizing the
MM region after every QM geometry
step (49, 55, 56). This strategy renders a
QM�MM optimization that is approxi-
mately as expensive as the correspond-
ing optimization of the QM region
alone, making such optimizations feasi-
ble for large systems.

The QM�MM approach is ideally
suited to studying reactions in proteins,
disordered solids, large molecules, and
other systems that have well defined
structures and are heterogeneous in
character. However, for processes in so-
lution, it is necessary to average exten-
sively over the positions of the solvent
molecules to properly take into account

environmental effects. Thus, QM�MM
approaches are possible but computa-
tionally very expensive. An alternative
that delivers reasonable accuracy at a
much lower computational cost is the
use of continuum models to describe the
solvent. The coupling of continuum
models with quantum chemical calcula-
tions using SCRF approaches (57, 58)
has been implemented over the past de-
cade in a number of widely available ab
initio quantum chemistry programs (e.g.,
GAUSSIAN, JAGUAR, and QCHEM). By
alternating cycles of continuum Poisson–
Boltzmann (59) (or approximations of
such cycles; ref. 60) and quantum chem-
ical computations, the interacting reac-
tion field of the solvent and charge dis-
tribution of the solute are iterated to
convergence. Geometry optimization of
structures in solution is also possible by
using analytical gradient methods (61,
62). To achieve accurate results for sol-
vation-free energies, parameters of the
continuum model must be fit to small
molecule experimental data (60, 63).
SCRF-based methods can also be used
effectively for pKa prediction (64). Last,
it is possible to combine QM�MM and
continuum solvation approaches, al-
though few articles combining these ap-
proaches have been published.

Applications
For small molecules in the gas phase
and in solution, ab initio quantum chem-
ical calculations can provide results ap-
proaching benchmark accuracy (11), and
they are used routinely to complement
experimental studies. A wide variety of
properties, including structures (12),
thermochemistry (11) (including activa-
tion barriers; ref. 65), spectroscopic
quantities of various types (13, 66), and
responses to external perturbations (67),
can be computed effectively. As dis-
cussed above, SCRF methods (or simply
ignoring the solvent entirely, an approxi-
mation that is sometimes acceptable,
particularly in nonpolar solvents or
when a quantity that is insensitive to the
dielectric of the environment is being
computed) enable a relatively straight-
forward extension of gas-phase quantum
chemical methods to obtaining results
for molecules in solution.

Materials-science applications have
grown exponentially over the past de-
cade and now involve exploration of
highly complex structures and chemis-
tries. Both bulk and surface properties
can be computed for solids (68), in
many cases yielding excellent agreement
with experiment. Bandgaps and optical
properties of solids have been addressed
successfully by DFT-based methods (69).
The interactions of small molecules with
surfaces has also been the subject of
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extensive investigation, with the focus on
structures, binding energies, and cata-
lytic chemistry (70–72). Calculations of
this type are central to practical applica-
tions involving industrially relevant cata-
lytic processes, semiconductor process-
ing, and modeling of conductivity for
microelectronics applications. Another
significant area of both theoretical and
practical interest is modeling photo-
chemical applications (e.g., solar energy
conversion by dyes adsorbed onto tita-
nium dioxide; ref. 20), as implemented
in the Graetzel cell (73), which has
achieved a conversion yield very close to
that of amorphous silicon.

Applications to nanotechnology are
relatively recent but represent a focus of
increasing interest. Among the systems
that have been investigated are carbon
nanostructures (buckyballs and nano-
tubes) (25, 74–76) and semiconductor
quantum dots (26, 77, 78). The effects
of quantum confinement and structural
modification imposed by various nano-
structures on chemical and electrical
properties can be investigated in a rigor-
ous fashion, which will be essential as
attempts are made to use these materi-
als in various types of devices.

Biological applications have focused
principally on the modeling of enzy-
matic catalysis and active-site chemistry
(79–88), although interesting investiga-
tions of other phenomena, such as coop-
erativity in backbone hydrogen bonding
(89) and modeling of �-sheet formation
propensities by a periodic DFT calcula-
tion (90), have been performed recently.
The use of QM�MM methods permits
incorporation of the full protein envi-
ronment, which is crucial in an impor-
tant subset of cases, as has recently been
shown in cytochrome P450 (79), for ex-
ample. A wide variety of enzymatic sys-
tems have been investigated, with quan-
titative comparison with experimental
structural and thermodynamic data
yielding an encouraging level of agree-
ment in the most accurate modeling ef-
forts. Ab initio calculations provide a
wealth of detail that is not available
from experiment and a degree of confi-
dence in the results that is not available
from more empirical approaches. In sys-
tems such as methane monooxygenase,
in which a substantial number of careful
calculations have been performed by
several groups (81, 91–96) and close
contact with experiment has been
achieved for many aspects of the cata-
lytic process, a comprehensive picture of
the functioning of the enzyme is begin-
ning to be assembled by means of the
interaction of theory and experiment.
Last, the coupling of ab initio quantum
QM�MM methods with simulation and
protein structure prediction techniques

permits investigation of events in which
reactive chemistry is coupled to substan-
tial conformational changes, such as the
catalytic loop motion in triose phos-
phate isomerase (82).

Last, a key application of quantum
chemical methods is in the development
of molecular mechanics force fields (97–
99). The quality of force fields has im-
proved enormously in the past two de-
cades, and a principal reason has been
the ability to fit parameters to the re-
sults of high-level ab initio calculations
for larger and more complex model
systems. For fixed-charge force fields,
torsional parameters can be fit to com-
putations of conformational energy dif-
ferences of model molecules, whereas
charge distributions can be fit to quan-
tum chemical electrostatic potentials.
Dimer-interaction energies have typi-
cally been used as a heuristic guide to
modeling nonbonded interactions; how-
ever, for a polarizable force field, these
quantities can be fit directly as well, be-
cause the model is supposed to repre-
sent nonbonded interactions accurately
in both the gas phase and the con-
densed phase (100, 101). Polarizability
parameters can also be fit to quantum
chemical data, although there are some
issues associated with basis set size
that must be considered when doing
so (100).

At this point, it is useful to summarize
how advances in theory and computa-
tional implementation have enabled the
tremendous growth in the important
applications described above. Small mol-
ecules in the gas phase are now typically
addressed by high-level methods such as
CCSD(T), which in many cases are
more accurate than experiment. As sys-
tems increase in size, one has to at some
point switch over to DFT and�or MP2.
Multireference perturbation methods
are typically applied when there are par-
ticular difficulties associated with near
degeneracies, or for properties such as
excited states for which specific multiref-
erence approaches (such as CASPT2)
have proven to be superior to DFT in a
wider subset of cases. The overwhelming
majority of large-scale material science
and biological applications have been
performed with DFT; this state of af-
fairs is mandated by the large size of the
systems that are being considered, the
need in some cases for periodic bound-
ary conditions, and the availability of
QM�MM and SCRF methods princi-
pally for DFT based approaches. Last,
for force-field development, localized
MP2 is the method of choice because of
its acceptable treatment of dispersion
interaction and higher accuracy for con-
formational energies and hydrogen
bonding energies than DFT while main-

taining a similar (if somewhat larger)
computational cost.

Conclusion and Future Directions
Over the next decade, we expect to see
significant increases in accuracy in all
four of the principal quantum chemical
directions described above. Progress in
developing DFT functionals has been
difficult since the breakthroughs of the
early 1990s; however, a number of
promising approaches (102–105) and key
systematic difficulties, such as problems
in predicting barrier heights of small
molecule radical reactions (106), have
been identified. Coupled-cluster and
multireference algorithms include at-
tempts to use localized reference states
that potentially could lead to the same
huge reductions in scaling with system
size that have been realized with local-
ized MP2 (107–110). Continued reduc-
tions in the cost�performance of
computing and improvements in algo-
rithmic details should continue to yield
shorter time to solution for increas-
ingly larger systems.

Similarly, improvement can be expected
in treatment of the condensed phase envi-
ronment. Optimization of the accuracy of
continuum solvation methods is far from a
solved problem; furthermore, there is
some evidence that the inclusion of a
small number of explicit water molecule
can improve results (111), but methods of
this type must be formulated very care-
fully to avoid double counting. QM�MM
methods can be made more accurate, ro-
bust, cost-effective, and easy to use. Last,
sampling algorithms in the condensed
phase are crucial for many large-scale ap-
plications, and significant advances can be
expected as more ambitious problems are
addressed.

Even if the technology were to stand
still, one would expect a large number of
important new applications to be carried
out over the next decade; with advances in
theory, software, and computational hard-
ware, larger data sets and systems of in-
creasing size, will be amenable to study.
However, the most exciting possibility is
that the parallel advances in theory and
experiment will enable fully explanatory
and predictive models to be constructed
for the complex, condensed-phase pro-
cesses that govern most of the natural
world. Ab initio quantum chemical meth-
ods are not the only technology that will
be a component of such a development,
but they surely are an essential one, as
demonstrated by the progress and pros-
pects outlined above.
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